Bharatiya Vidya Bhavan's
 Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)
Munshi Nagar, Andheri (West), Mumbai - 400058.
End Semester Examination
March - 2023
Max. Marks: 100 mi tech civic with str. Lings - Lem i 3/3/23
Hours
Class: M.Tech.
Narrie of the Course: Structural Dynamics

-

In structions:

- Answer any five questions.
- Answers to all sub questions should be grouped together.
- Figures to the right indicate full marks.
- Assume suitable data if necessary and state the same clearly.

	(i) Stiffness of structure (ii) Damped frequency (ii) Damping coefficient (iii) Logarithmic decrement (iv)Number of cycles and time required for the amplitude of motion to be reduced from initial of 3.0 mm to 0.3 mm .				
Q2 (a)	The frame shown in figure is subjected to a triangular pulse type load as shown in figure at girder level. Calculate the maximum horizontal displacement at girder level and maximum bending moment in column AB . The response spectra for this dynamic load are also shown in the figure.		2	3	2
Q2(b)	Derive the expression for Transmissibility Ratio and briefly explain how vibration isolation can be achieved.	8	2	3	2
Q2(c)	A machine weighing 25 KN exerts harmonic force 4000 N amplitude, at 10 Hz at its supports. After installing the machine on a spring damper type isolator, the force exerted on the support is reduced to 400 N . Determine the spring stiffness k. Take damping ratio as 10%.	4	2	3	2
Q3	A three storey single bay frame has storey height of 4 m . The columns on ground and first story are 250 mm wide $\mathbf{X} 600$ mm deep while at $2^{\text {nd }}$ story the size a column is 250 mm x 500 mm \& beams are very stiff. The mass on each and floor is $\mathbf{3 0} \mathbf{t} . \mathbf{E}=\mathbf{2 0 0 0 0} \mathbf{M p a}$. Calculate natural frequencies \& mode shapes	20	2	4	5
Q4(a)	State and prove orthogonality principle. Also state the significance of orthogonality principle in dynamic analysis	5	2	3	5

Figure for QND.(a)
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
maven Gives with stor tags. dem F
End Sem. March 2023

Program: M.Tech-Structuxes
Course Code: PC -MST 102
Course Name: Advanced Structural Analysis

Duration: 3 Hrs
Maximum Points: 100
Semester: I

Bharatiya Vidya Bhavan's
S.ARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

End Sem March 2023

Q3	Analyze the following frame .Draw SFD and BMD. Assume $\mathrm{E}=30000 \mathrm{~N} / \mathrm{mm} 2$. Size of element AB is 300 mmX 300 mm and BC is 300 mmX 450 mm .	20	1	3	
Q4	A hook carries a load of 7.5 kN and the load line is at a distance of 20 nam from the inner edge of section which is trapezoidal. The load line also passes through the centre of curvature of the hook. The dimensions of the central horizontal trapezoidal section are inner width $=50 \mathrm{~mm}$,outer width $=25 \mathrm{~mm}$. Depth $=40 \mathrm{~mm}$. Calculate the maximum and minimum stresses. Also plot the variation of stress across the section.	20	3	3	
45	Analyze the following frame section. $\mathrm{EI}=80000 \mathrm{kN}$ $\mathrm{m} 2 . \mathrm{AE}=5000 \mathrm{kN}$ Support C slips to right by 5 mm .	20	2	3	
Q6	Calculate total strain energy stored in following frame.	20	1	3	-

Munshi Nagar, Andheri (W) Mumbai - 400058

End Sem March 2023

Q7	Analyze the following truss using stiffness method	20	2	3

End semester exam - March 2023

Program: M.Tech Civil Engineering - Structures
Course Code: EC-MST 105
Course Name: Design of Prestressed Concrete Structures

Notes:

- Attempt any 5 main questions. Draw neat sketches to illustrate your answers
- Assume suitable data if missing and state the same clearly.
- Use of IS 1343 is allowed

Q.No.	Questions	Points	CO	BL	Module
1	a) Explain how pre-stressing affects deflection of beams. What are the factors affecting long term deflection? b) Explain : full pre-stressing, limited pre-stressing and partial pre-stressing. c) A 6 m long simply supported pre-stressed concrete beam has the cross section and pre-stressing profile as shown below. Determine the stresses in extreme fibres at mid span and supports if the beam carries a superimposed load of $15 \mathrm{kN} / \mathrm{m}$ on full span.	05 05 10	I $1,3$	2 2 3	01 01 02
2.a)	Determine the ultimate moment of resistance for a prestressed box section as shown below. The $f_{c x}=40 \mathrm{~N} / \mathrm{mm}^{2}$, $f_{p u}=1800 \mathrm{~N} / \mathrm{mm}^{2}$. The total cross-sectional area of the tendons is 1000 mm 2 with the centroid at a distance of 100 mm from the bottom fibre.	10	3	3,5	03

End semester exam - March 2023

2.b)	Design the shear reinforcement at quarter span for a simply supported beam of rectangular cross section 350 mmx 750 mm and span 11 m . It carries a live load UDL of $9.5 \mathrm{kN} / \mathrm{m}$ (unfactored). It is prestressed by a straight cable that is having eccentricity of 275 mm fck $=40 \mathrm{MPa}$ Effective prestress in cable $=1200 \mathrm{MPa}$ Characteristic strength of PT steel $=1600 \mathrm{MPa}$ Use Fe 415 grade steel for reinforcement. Assume that the section is cracked.				10	3	3,5	03
3.a)	a) A sim with 2 ca is success cables 1-2 \square Cable I Cable 2 Each cab initial ten co-efficien at transfe $\mathrm{Es}=210 \mathrm{k}$ Calculate and ancho	y supported es having a ely tension Profile Parabolic Straight has a cros of 1250 M for wave f prestress $/ \mathrm{mm}^{2}$, Ec \% losses ge slip	post tensioned b ross section of 3 from a single e Eccentricity at midspan 250 mm (below N.A.) 450mm(below NA) section area of Pa. Co-efficient ect $=0.0015 / \mathrm{m}$. 28days. Ancho $0 \mathrm{kN} / \mathrm{mm}^{2}$. due to elastic sh	am of span 20 m 0 mmX 1400 mm ad in the order of Eccentricity at support 0 mm 450mm(below NA) 500 mm and an for friction $=0.5$; Age of concrete age slip $=4 \mathrm{~mm}$. rtening, friction	12	2	3,5	02
3.b)	Explain the effect of pre-stressing on shear resistance of a beam using the concept of principal stresses and Mohr circle				08	1,3	2	03
4.a)	Explain the various stages to be considered in design of pre-stressed sections and the IS code provisions for limiting stresses for pre-tensioned and post-tensioned members.				10	3,5	4	05
4.b)	Explain load-balancing concept. Determine the equivalent loading and the camber induced for a simply supported beam having i) Straight tendon profile at an eccentricity e ii) parabolic profile concentric at supports and e at midspan iii) Inclined cable with a kink at midspan having eccentricity e				10	1	2	02
5.	A 15 m span simply supported composite beam consists of 350 mmX 600 mm precast stem and a cast-in-situ flange of				20	4	3	06

	650 mmX 300 mm . The stem is a post tensioned unit subjected to an effective prestressing force of 1000 kN . The tendons are provided at 150 mm from the soffit of stem. The beam has to support a live load of $12 \mathrm{kN} / \mathrm{m}$. Determine the resultant stress distribution in the beam if the beam is a) unpropped; b) propped Draw neat sketches to show the variations of stresses at each stage				
6.a)	Derive the expression for deflection due to prestress when the profile is parabolic having zero eccentricity at ends and "e" at mid span for a simply supported beam A simply supported pr-estressed beam of cross section $350 \mathrm{~mm} \times 1200 \mathrm{~mm}$ and span 15 m has a straight profile of cable with eccentricity of 350 mm below N.A. It carries a live load of $10 \mathrm{kN} / \mathrm{m}$. The area of cable is $500 \mathrm{~mm}^{2}$ and it is initially tensioned to $1250 \mathrm{~N} / \mathrm{mm}^{2} . \%$ loss $=28 \%$ Calculate the : i) Instantaneous deflection due to dead load + prestressing force ii) Long term deflection if the creep coefficient is 1.6 $E s=210 \mathrm{kN} / \mathrm{mm}^{2} ; \mathrm{Ec}=35 \mathrm{kN} / \mathrm{mm}^{2}$	10	1	3	03
6.b)	The end block of a post-tensioned beam has three anchorages with 300 mm square bearing plates as shown in figure. An initial pre-stressing force of 700 kN is applied to each anchorage. Design the end zone reinforcement.	10	3	3,5	04

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End semester exam - March 2023

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andleri (W) Mumbai - 400058
End Semester Examinations- March 2023
(ivat with
Program: M.Tech. (Structural Engineering) Lem I
Course Code: EC-MST114
Course Name: Elective-II: Non Linear Analysis

Duration: 3 Hours
Maximum Points: 100
Semester: I

Instructions:

- Attempt any FIVE questions out of SEVEN questions.
- Answers to all sub questions should be grouped together.
- Figures to the right indicate full marks.
- Assume suitable data if necessary and state the same clearly.

Q.No	Questions	Points	co	BL	PI
Q1(a)	State and explain upper bound theorem used in plastic analysis.	(05)	1	1,2	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q1(b)	Explain St. Venant's torsion and warping torsion.	(05)	4	2	1.3.1
Q1(c)	Write a note lateral buckling of beams	(05)	4	1,2	$\begin{array}{\|l\|} \hline 1.3 .1 \\ 2.1 .3 \\ \hline \end{array}$
Q1(d)	What is a beam column? Explain	(05)	3	2	1.3.1
Q2(a)	A steel beam of rectangular section 75 mm wide and 150 mm deep is simply supported over a span of 4 m . If the beam carries a uniformly distributed load of $30 \mathrm{kN} / \mathrm{m}$ length on the entire span, find the depth of the elastic core at the mid-span. The yield stress of steel $250 \mathrm{~N} / \mathrm{mm}^{2}$.	(06)	1	3,4	2.1.2
Q2(b)	Find the shape factor of a circular cross section of external D	(04)	1	3,4	2.1 .2
Q2(c)	Find the shape factor of an unsymmetrical I section with following details: Top flange width $=400 \mathrm{~mm}$ \& thickness $=40 \mathrm{~mm}$ Bottom flange width $=300 \mathrm{~mm}$ \& thickness $=30 \mathrm{~mm}$ Depth of web $=300 \mathrm{~mm}$ and thickness of web $=30 \mathrm{~mm}$	(10)	1	3,4	$\begin{array}{\|l\|} \hline 2.1 .3 \\ 2.2 .3 \end{array}$

End Semester Examinations- March 2023

Q3	For the frame shown in figure below, find the collapse load factor. Loads shown in the figure are working loads and the plastic moment capacity of each member in $\mathrm{kN}-\mathrm{m}$ is also shown in the figure.	(20)	1	3,4	$\begin{aligned} & \hline 2.1 .3 \\ & 2.2 .3 \end{aligned}$
Q4(a)	A continuous beam is subjected to working loads as shown in figure below. If $\mathrm{M}_{\mathrm{P}}=80 \mathrm{kN}-\mathrm{m}$, calculate the (true) load factor for the beam.	(10)	1	3,4	$\begin{array}{\|l\|l} \hline 2.1 .3 \\ 2.2 .3 \end{array}$
Q4(b)	Write a note on effect of axial force on plastic moment capacity of a flexural member.	(10)	2	$\begin{aligned} & 1,2, \\ & 3, \end{aligned}$	$\begin{array}{\|l\|} \hline 1.3 .1 \\ 2.1 .3 \end{array}$
Q5(a)	A column of length L and pinned at both the ends is under the action of an axial compressive load P. The flexural rigidity of the member varies uniformly from EI at either end (support) to 1.5 EI at the centre. Find the critical load by finite difference method.	(10)	3	3,4	$\begin{array}{\|l} 2.2 .3 \\ 2.4 .1 \end{array}$
Q5(b)	Use energy method A column of length L and pinned at both the ends is under the action of an axial compressive load P. Find the critical load by energy method if the flexural stiffness of the member varies according to $\begin{aligned} \mathrm{EI}(\mathrm{x}) & =\mathrm{EI}_{0} & & 0 \leq \mathrm{x} \leq \mathrm{L} / 5 \\ & =2 \mathrm{EI}_{0} & & \mathrm{~L} / 5 \leq \mathrm{x} \leq 4 \mathrm{~L} / 5 \\ & =\mathrm{EI}_{0} & & 4 \mathrm{~L} / 5 \leq \mathrm{x} \leq \mathrm{L} \end{aligned}$	(10)	3	3,4	$\begin{array}{\|l} 2.2 .3 \\ 2.4 .1 \end{array}$

End Semester Examinations- March 2023

Q6(a)	Determine the critical load for the frame shown in figure.	(14)	3		

Course Code: EC-MST125
Course Name: Advanced solid Mechanics

Maximum Points: 100
Semester: I

Notes: Question no. 1 is compulsory. Solve any 2 questions out of remaining questions

Q.No.	Questions	Points	CO	BL	PI
1 a	The state of strain at a point is given by $\varepsilon x=0.001$, $\varepsilon y=-0.003, \varepsilon z=0, \gamma x y=0, \gamma y z=0.001, \gamma z x=-0.004$. Determine the stress tensor at this point. Take $\mathrm{E}=210 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}$ Poisson's ratio $=0.28$. Also find Lame's constant.	10	1	4	$\begin{aligned} & 1.1 .1 \\ & 1.1 .3 \end{aligned}$
1 b	State plane stress and plane strain. Discuss the plane stress and plane strain for two dimensional problems with illustrations.	10	1	4	1.1.1
2	The stress field at a point with respect to X, Y, Z coordinate system is given by the array in MPa as $\left[\begin{array}{lll} 4 & 1 & 2 \\ 1 & 6 & 0 \\ 2 & 0 & 8 \end{array}\right]$ Show that by transformation of axis by 45° about the Z axis in the anticlockwise direction, the stress invariants remain unchanged.	20	1	4	$\begin{aligned} & 1.1 .1 \\ & 1.1 .3 \end{aligned}$
3	Show that for a simply supported beam, length 2L, depth 2a and unit width, loaded by a concentrated load W at the centre, the stress function satisfying the loading condition is $\phi=\frac{b}{6} x y^{2}+C x y$ The positive direction of Y being upwards, and is at $\mathrm{x}=$ 0 at mid span. X axis is at centre of depth and towards right.	20	2		$\begin{aligned} & 1.1 .1 \\ & 1.1 .3 \end{aligned}$

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Anctheri (W) Mumbai- 400058

TERM END EXAMINATION MARCH 2023

TERM END EXAMINATION MARCH 2023

Pg 3 ot 3.

Bharatiya Vida Bhavan's SARDAR PATEL COLLEGE OF ENGINEERING

(An Autonomous Institution Affiliated to University of Mumbai)
END SEMESTER EXAMINATION

Lan I 1573723

Programme	MTech Structural Engineering	MTech Construction Management
Course Code	MC-PG01	MC-PGU1

Duration : 3 Hours
$15{ }^{\text {th }}$ March 2022

- Question 1 is compulsory
- Solve Any Four Questions from the remaining
- Answers to all sub questions must be grouped together
- Figures to the right indicate full marks
- Assume suitable data wherever necessary

Q3B	Explain the following points with respect to Chi Square test. - Purpose of using Chi Sq Tests - Chi Sq. Distribution - Chi Sq.Table - Observed frequencies - Estimated frequencies - Types of application of Chi Sq Test	10	M1,M2	$\begin{aligned} & \mathrm{CO1}, \\ & \mathrm{CO} \end{aligned}$
Q4A	A population is divided into four strata so that $\mathrm{N} 1=9500, \mathrm{~N} 2=5500$ and $\mathrm{N} 3=7000, \mathrm{~N} 4=11500$ Respective standard deviations are: $\mathrm{sl}=11, \mathrm{~s} 2=15, \mathrm{~s} 3=10, \mathrm{~s} 4=7$. Costs in rupees to collect the strata are $\mathrm{Cl}=$ $10000, \mathrm{C} 2=5000, \mathrm{C} 3=7000, \mathrm{C} 4=11000$. How should a sample of size n $=92$ be allocated to the four strata, if we want optimum allocation using Cost Optimal Disproportionate sampling design?	10	M3	CO2
Q5A	Explain the following with suitable examples A. Statistical Hypothesis Test Procedures and the Criminal Trial Analogy B. Patent Rights Geographical indications	10	M1,M5	$\begin{aligned} & \mathrm{CO3} \\ & \mathrm{CO} 1 \end{aligned}$
Q5B	The following are the number of departmental stores in 15 cities: 35,17 , $10,32,70,28,26,19,26,66,37,44,33,29$ and 28 . If we want to select a sample of 25 stores, using cities as clusters and selecting within clusters proportional to size, how many stores from each city should be chosen?(Use a starting point of 5).	10	M1,M2	$\begin{aligned} & \mathrm{CO1} \\ & \mathrm{CO} 2 \end{aligned}$
Q6A	What are the prerequisites of data collection? Explore the factors affecting success of interview process. Differentiate the Structured interview, Semi-structured interview and unstructured interview process with suitable examples. Refer the following points - Knowledge of Interviewer - Time availability for both parties - Cost - Bias - Freedom of expression - Area of application - Quality of output - Noise factors - Knowledge of Interviewee - Efforts needed for conducting interview	10	M1	$\begin{aligned} & \mathrm{CO1} \\ & \mathrm{CO} 2 \end{aligned}$
Q6B	Researcher conducted experimental investigations on concrete cubes, to study the influence of fly ash, GGBS and glass waste powder (GWP) individually, on the compressive strength of concrete. The cubes were casted for M30 grade of concrete and by random sampling method, tested after 28 days curing. For cubes in Group I, 30\% fly ash was added, for Group II; 30% GGBS was added and in Group III, 30\% GWP was added. The 28 days compressive strengths of cubes in $\mathrm{N} / \mathrm{mm}^{2}$	10	$\begin{aligned} & \text { M1, } \\ & \text { M5 } \end{aligned}$	C02

$\left.\begin{array}{|l|l|l|l|l|}\hline & \begin{array}{l}\text { are given below. Check whether the mean compressive strength of the 3 } \\ \text { different groups is same or not. } \\ \text { Group I }-34,33,29,35,28,31 \\ \text { Group II }-32,29,35,29,35\end{array} \\ \text { Group III }-34,32,29,35,33,29,28\end{array}\right)$

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
-3.4	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0002
-3.3	. 0005	. 0005	.0605	. 0004	. 0004	. 00004	. 0004	. 0004	. 0004	. 0003
-3.2	. 0007	. 0007	. 0006	. 0006	. 0006	. 0006	. 0006	. 0005	. 0005	. 0005
-3.1	. 0010	. 0009	00009	.0009	.0008	. 0008	. 0008	. 00008	. 0007	. 0007
-3.0	. 0013	. 0013	. 0013	. 0012	. 0012	. 0011	. 0011	. 0011	. 0010	. 0010
-2.9	. 0019	. 0018	0018	. 0017	. 0016	. 0016	. 0015	. 0015	. 0014	. 0014
-2.8	0026	. 0025	. 0024	. 0023	. 0023	. 0022	. 0021	. 0021	. 0020	. 0019
-2.7	. 0035	. 0034	. 0033	. 0032	. 0031	. 0030	. 0029	. 0028	. 0027	. 0026
-2.6	. 0047	. 0045	. 0044	. 0043	. 0041	. 0040	. 0039	. 0038	. 0037	. 0036
-2.5	. 0062	. 0060	00059	. 0057	. 0055	. 0054	. 0052	. 0051	,0049	. 0048
-2.4	. 0082	. 0080	. 0078	. 0075	. 0073	. 0071	. 0069	. 0068	. 0066	. 0064
-2.3	. 0107	0104	. 0102	. 0099	. 0096	. 0094	. 0091	. 0089	. 0087	.0084:
-2.2	. 0139	. 0136	. 0132	. 0129	. 0125	. 0122	. 0119	. 0116	. 0113	. 0110
-2.1	. 0179	. 0174	. 0170	. 0166	. 0162	. 0158	. 0154	. 0150	. 0146	. 0143
-2.0	. 0228	. 0222	. 0217	. 0212	. 0207	. 0202	. 0197	. 0192	. 0188	. 0183
-1.9	. 0287	. 0281	. 0274	. 0268	. 0262	. 0256	. 0250	. 0244	. 0239	. 0233
-1.8	. 0359	. 0351	. 0344	. 0336	. 0329	. 0322	. 0314	. 0307	. 0301	. 0294
-1.7	. 0446	. 0436	. 0427	. 0418	. 0409	. 040.1	. 0392	. 0384	. 0375	0367
-1.6	. 0548	. 0537	. 0526	. 0516	. 0505	. 0495	. 0485	. 0475	. 0465	. 0455
-1.5	. 0668	. 0655	. 0643	. 0630	.0618	. 0606	. 0594	0582	.,0571	0559
-1.4	. 0808	. 0793	. 0778	. 0764	. 0749	. 0735	. 0721	. 0708	. 0694	. 0681
-1.3	. 0968	. 0951	. 0934	. 0918	. 0901	. 0885	. 0869	. 0853	. 0838	. 0823
-1.2	. 1151	.1131	. 1112	. 1093	. 1075	1056	1038	. 1020	. 1003	. 0985
-1.1	. 1357	. 1335	. 1314	. 1292	.1271	1251	.1230	1210	. 1190	. 1170
-1.0	. 1587	. 1562	. 1539	. 1515	. 1492	. 1469	. 1446	.1423	. 1401	. 1379
-0.9	1841	. 1814	. 1788	.1762	. 1736	. 1711	. 1685	. 1660	. 1635	1611
-0.8	. 2119	. 2090	. 2061	. 2033	. 2005	1977	. 1949	. 1922	. 1894	. 1867
-0.7	. 2420	. 2389	. 2358	. 2327	. 2296	. 2266	. 2236	. 2206	. 2177	. 2148
-0.6	. 2743	. 2709	. 2676	. 2643	2611	. 2578	. 2546	. 2514	.2483	. 2451
-0.5	. 3085	. 3050	. 3015	2981	. 29446	. 2912	. 2877	. 2843	. 2810	.2776
-0.4	. 3446	. 3409	. 3372	. 3336	. 3300	. 3264	. 3228	. 3192	. 3156	. 3121
-0.3	. 3821	. 3783	. 3745	. 3707	. 3669	. 3632	. 3594	. 3557	.3520	3483
-0.2	. 4207	. 4168	. 4129	. 4090	. 4052	. 4013	. 3974	. 3936	. 3897	. 3859
-0.1	. 4602	. 4562	. 4522	. 4483	. 4443	. 4404	. 4364	. 4325	. 4286	. 4247
-0.0	. 5000	. 4960	.4920	. 4880	. 4840	. 4801	. 4761	. 4721	. 4681	. 4641

Chi-Square Distribution Table

The shaded area is equal to α for $\chi^{2}=\chi_{\alpha}^{2}$.

df	$\chi^{2} .995$	$\chi^{2} .990$	$\chi^{2}{ }^{2}{ }^{\text {a }}$	$\chi_{\text {. }}^{250}$	$\chi^{2}{ }^{2} 000$	$\chi^{2} 100$	$\chi^{2} .050$	$\chi^{2} .025$	$\chi^{2} .10$	$\chi^{2} .005$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6:635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	1.5.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	. 390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490
60	35.534	37.485	40.482	43.188	46.459	74.397	79.082	83.298	88.379	91.952
70	43.275	45.442	48.758	51.739	55.329	85.527	90.531	95.023	100.425	104.215
80	51.172	53.540	57.153	60.391	64.278	96.578	101.879	106.629	112.329	116.321
90	59.196	61.754	65.647	69.126	73.291	107.565	113.145	118.136	124.116	128.299
100	67.328	70.065	74.222	77.929	82.358	118.498	124.342	129.561	135.807	140.169

Standard Normal Probabilities

Table entry for z is the area under the standard normal curve to the left of z.

$\underline{7}$. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	.6480	,6594\%
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	.7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8688	. 8708	. 8729	. 8749	- 8770	. 8790	. 8810	8820
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	9830	.9834	. 9838	. 9842	. 9846	.9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
23	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9989	. 9989	. 9989	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER EXAMINATION MARCH 2023
Program: F. Y. M. Tech Givil with sts. cref
Course Code: AU-PG 01
Course Name: Project Planning and Management

Duration: 3 Hours
Maximum Points: 100
Semester: I

Notes:

1. Answer any five questions.
2. All questions carry 20 points.

Q.No.	Questions	Points	CO	BLModule No.	
	1.1 Why is it important to issue a Civil, Structural, Architectural Design Basis for the project? List ten of the most important design requirements that should be contained in the Design Basis.				
	1.2 List out at least ten steps, in sequence, for the preparation of Civil Structural, Architectural Tender specification.	10	1	1	2
	2.1 Explain the three fundamental components in a computer model for structural analysis. Explain the three stages in the process of computer analysis highlighting Engineer's and computer's roles.	10	2	2	2
2	2.2 List out at least ten steps, in sequence, in the designing of a complex plant steel structure.	10	2	3	3
	3.1 Write a detailed note on reinforcement Bar Bending Schedules including contents, cutting length and users.	10	2	2	4
3	3.2 Explain Building Information Modelling (BIM) along with its use in different stages of a construction project and its advantages.	10	2	1	5
	4.1 Explain the key concepts for Project Resource Management and Project Risk Management.	10	1	2	2
	4.2 Explain any five top Emerging Trends which are impacting the Construction Industry today.	10	3	5	5

Page 1 of 2

END SEMESTER EXAMINATION MARCH 2023

Q.No.	Questions	Points	CO	BL	Module No.
5	5.1 Explain the change in approach towards Project Management in the seventh edition of the PMBOK Guide briefly defining project management principles and performance domains, list any three of each.	10	3	2	1
	5.2 List ten guidelines to be considered while developing a plot plan/layout for a process plant.	10	2	3	2
	6.1 Write a brief note on i)Project and ii)Project Management	10	2	1	2
	6.2 Explain Quality and Grade. Explain Quality Assurance and Quality Control; which is preferred and why?				
	7.1 When a project commences, what are the early activities carried out by CSA discipline? On what activities does the CSA engineer spend a major portion of time?	10	4	4	5
7	7.2 Write a note on Method statement in construction. What are the objectives of Constructability Reviews?	10	2	3	2

